A Necessary and Sufficient Condition for Nonnegative Product Linearization of Orthogonal Polynomials

نویسندگان

  • Ryszard Szwarc
  • R. Szwarc
چکیده

cos nθ cos mθ = 2 cos(n − m)θ + 2 cos(n + m)θ. Certain classical orthogonal polynomials admit explicit computation of the coefficients c(n,m, k). For example, they are known explicitly for the ultraspherical polynomials along with their q-analogs [8]. However, they are not available in a simple form for the nonsymmetric Jacobi polynomials (see [7]). The first general criterion for nonnegativity of linearization coefficients is due to Askey [1]. Although it is pretty strong it is not strong enough to cover all classes of the ultraspherical polynomials. It is well-known that the problem of product linearization is equivalent to a certain discrete hyperbolic boundary value problem. This approach has been used in [6], [9] to derive new criteria for nonnegative linearization. The new criteria

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Linearization coefficients for orthogonal polynomials using stochastic processes

ABSTRACT. Given a basis for a polynomial ring, the coefficients in the expansion of a product of some of its elements in terms of this basis are called linearization coefficients. These coefficients have combinatorial significance for many classical families of orthogonal polynomials. Starting with a stochastic process and using the stochastic measures machinery introduced by Rota and Wallstrom...

متن کامل

General linearization formulae for products of continuous hypergeometric-type polynomials

The linearization of products of wavefunctions of exactly solvable potentials often reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a continuous variable, which consists of the expansion of the product of two arbitrary HPs in series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of the coefficients of the second-ord...

متن کامل

Connection and linearization coefficients of the Askey-Wilson polynomials

The linearization problem is the problem of finding the coefficients Ck (m,n) in the expansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third sequence of polynomials Rk (x), Pn(x)Qm(x) = n+m ∑ k=0 Ck (m,n)Rk (x). The polynomials Pn , Qm and Rk may belong to three different polynomial families. In the case P = Q = R, we get the (standard ) linearization or Clebsch-Gordan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003